Differential effects of synaptic and extrasynaptic NMDA receptors on Aβ-induced nitric oxide production in cerebrocortical neurons.

نویسندگان

  • Elena Molokanova
  • Mohd Waseem Akhtar
  • Sara Sanz-Blasco
  • Shichun Tu
  • Juan C Piña-Crespo
  • Scott R McKercher
  • Stuart A Lipton
چکیده

Oligomerized amyloid-β (Aβ) peptide is thought to contribute to synaptic damage, resulting in dysfunctional neuronal networks in patients with Alzheimer's disease. It has been previously suggested that Aβ may be detrimental to neuronal health, at least in part, by triggering oxidative/nitrosative stress. However, the mechanisms underlying this process remain to be elucidated. Here, using rat primary cerebrocortical cultures, we demonstrate that Aβ1-42 oligomers trigger a dramatic increase in intracellular nitric oxide (NO) concentration via a process mediated by activation of NMDA-type glutamate receptors (NMDARs). Considering that synaptic NMDARs and extrasynaptic NMDARs (eNMDARs) can have opposite effects on neuronal viability, we explored their respective roles in Aβ-induced increases in NO levels. Surprisingly, after pharmacological isolation of eNMDARs, we discovered that eNMDARs are primarily responsible for the increase in neuronal NO triggered by Aβ oligomers. Moreover, we found that the eNMDAR-mediated increase in NO can produce S-nitrosylation of Drp1 (dynamin-related protein 1) and Cdk5 (cyclin-dependent kinase 5), targets known to contribute to Aβ-induced synaptic damage. These results suggest that pharmacological intervention specifically aimed at eNMDARs may decrease Aβ-induced nitrosative stress and thus ameliorate neurotoxic damage to synapses.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Selective impairment of some forms of synaptic plasticity by oligomeric amyloid-β peptide in the mouse hippocampus: implication of extrasynaptic NMDA receptors.

Alzheimer's disease is characterized by the loss of memory and synaptic damage. Evidence is accumulating for a causal role of soluble oligomeric species of amyloid-β peptide (Aβo) in the impairment of synaptic plasticity and cognition but the precise mechanisms underlying these effects are still not clear. Synaptic plasticity such as long-term potentiation is thought to underlie learning and me...

متن کامل

Synapses, NMDA receptor activity and neuronal Aβ production in Alzheimer's disease.

A direct relationship has been established between synaptic activity and amyloid-β secretion. Dysregulation of neuronal calcium homeostasis was shown to increase production of amyloid-β, contributing to the initiation of Alzheimer's disease. Among the different routes of Ca(2+) entry, N-methyl-d-aspartate (NMDA) receptors, a subtype of ionotropic glutamate receptors, are especially involved in ...

متن کامل

In developing hippocampal neurons, NR2B-containing NMDA receptors can mediate signalling to neuronal survival and synaptic potentiation, as well as neuronal death

It has been suggested that NR2B-containing NMDA receptors have a selective tendency to promote pro-death signalling and synaptic depression, compared to the survival promoting, synapse potentiating properties of NR2A-containing NMDA receptors. A preferential localization of NR2A-containing NMDA receptors at the synapse in maturing neurons could thus explain differences in synaptic vs. extrasyna...

متن کامل

Hypoxic/ischemic conditions induce expression of the putative pro-death gene Clca1 via activation of extrasynaptic N-methyl-D-aspartate receptors.

The stimulation of extrasynaptic N-methyl-D-aspartate (NMDA) receptors triggers cell death pathways and has been suggested to play a key role in cell degeneration and neuron loss associated with glutamate-induced excitotoxicity. In contrast, synaptic NMDA receptors promote neuronal survival. One mechanism through which extrasynaptic NMDA receptors damage neurons may involve Clca1, which encodes...

متن کامل

Distribution of Extrasynaptic NMDA Receptors on Neurons

NMDA receptors are found in both synaptic and extrasynaptic locations on neurons. NMDA receptors also can be found on neurons in early stages prior to synaptogenesis, where they may be involved in migration and differentiation. Extrasynaptic NMDA receptors typically are associated with contacts with adjacent processes such as axons and glia. Extrasynaptic NMDA receptor clusters vary in size and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 34 14  شماره 

صفحات  -

تاریخ انتشار 2014